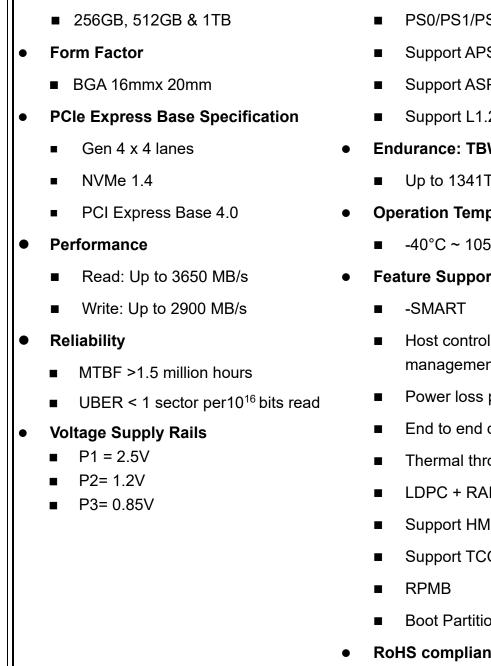
DELKIN DEVICES

Automotive Grade 2

INDUSTRIAL BGA SSD

Engineering Specification


Document Number: 401-0603-00

Revision: A

Capacity

Overview

Power Saving Modes (Optional) •

- PS0/PS1/PS2/PS3/PS4 (<3.5W)
- Support APST
- Support ASPM
- Support L1.2
- **Endurance: TBW**
 - Up to 1341TB
- **Operation Temperature Range**
 - -40°C ~ 105°C
- Feature Support List
 - Host controlled thermal management
 - Power loss protection
 - End to end data path protection
 - Thermal throttling
 - LDPC + RAID ECC
 - Support HMB¹
 - Support TCG OPAL
 - **Boot Partition**
- **RoHS compliant**

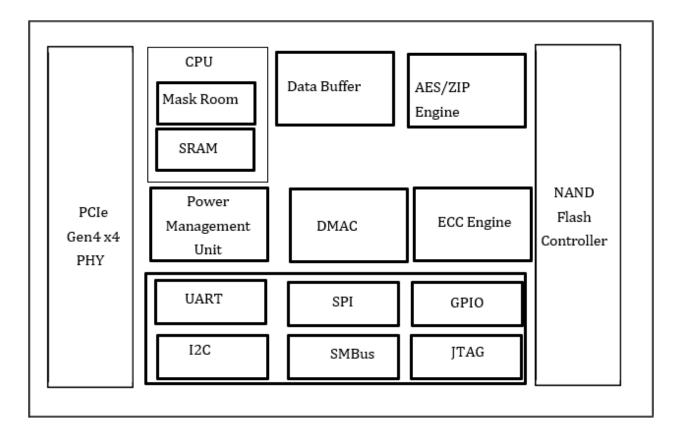
Notes:

1. Win10 (version 1809) and above supports HMB (Host Memory Buffer) function.

Table of Contents

1.	Introduction5
1.1.	General Description5
1.2	Controller Block Diagram5
1.3	Flash Management6
1.3.1	Error Correction Code (ECC)
1.3.2	Wear Leveling
1.3.3	Bad Block Management6
1.3.4	TRIM
1.3.5	Smart Function7
1.3.6	Over-Provision
1.4	Advanced Device Security Features7
1.4.1	Secure Erase7
1.5	SSD Lifetime Management7
1.4	An Adaptive Approach to Performance Tuning8
1.4.1	Throughput
2	Product Specification overview9
2.4	Performance10
3	Environmental Specifications11
3.1	MTBF11
3.2	Certifications and Compliances11
4	Electrical Specifications12
4.1	Supply Voltage12
4.2	Power Consumption12
5	Interface
5.1	Pin Assignment and Descriptions14
6	Supported Commands 24
6.1.	NVMe Command List
6.2	Identify Device Data
7	SMART Attributes
8	Physical DimensionS

1. INTRODUCTION


1.1. General Description

Delkin Devices BGA SSD delivers all the advantages of flash drive technology with PCIe Gen 4x4 interface in an embedded BGA form factor. It is estimated to reach up to 3700 MB/s read as well as 3000 MB/s write sequential performance. The Delkin Devices BGA SSD throughput is capable of saturating Gen 4x4 host interface. The power consumption of our BGA SSD is much lower than traditional hard drives, making it the best embedded solution for new platforms.

Part Number	Available Capacities	BGA	Size
FA2HFSTNV-AD000-2	256GB	291 Ball	22 x 30 x 2.15mm
FA5HFSTNV-AD000-2	512GB	291 Ball	22 x 30 x 2.15mm
FA1TFSTNV-AD000-2	1TB	291 Ball	22 x 30 x 2.15mm

Table 1 – Device Summar	y
-------------------------	---

1.2 CONTROLLER BLOCK DIAGRAM

1.3 Flash Management

1.3.1 Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Delkin's BGA SSD controller applies the LDPC (Low Density Parity Check) ECC algorithm, which can detect and correct errors that occur during the Read process, ensuring data has been read correctly, as well as protect data from corruption.

1.3.2 Wear Leveling

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some areas are updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling techniques are applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media. Delkin's controller utilizes an advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

1.3.3 Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Delkin implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that develop with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

1.3.4 TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid state drives (SSD). SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD so that blocks of data that are no longer in use can be removed permanently. Thus, the SSD will perform the erase action, which prevents unused data from occupying blocks at all time.

1.3.5 Smart Function

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is a special function that allows a memory device to automatically monitor its health. When a failure is recorded by S.M.A.R.T., users can choose to replace the drive to prevent unexpected outage or data loss. S.M.A.R.T. can inform users impending failures while there is still time to perform proactive actions, such as save data to another device.

1.3.6 Over-Provision

Over Provisioning refers to the preserving additional area beyond user capacity in a SSD, which is not visible to users and cannot be used by them. However, it allows a SSD controller to utilize additional space for better performance and WAF. With Over Provisioning, the performance and IOPS (Input/ Output Operations per Second) are improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.4 Advanced Device Security Features

1.4.1 Secure Erase

Secure Erase is a standard NVMe format command and will make all "0xFF" to fully wipe all the data on hard drives and SSDs. When this command is issued, SSD controller will erase its storage blocks and return to its factory default settings

1.5 SSD Lifetime Management

Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

TBW = [(NAND Endurance) x (SSD Capacity)] / [WAF]

<u>NAND Endurance</u>: NAND endurance refers to the P/E (Program/Erase) cycle of a NAND flash. <u>SSD Capacity</u>: The SSD capacity is the specific capacity in total of a SSD.

<u>WAF</u>: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller needs to write and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency of data written to flash memory.

TBW in this document is based on JEDEC 219 workload.

Media Wear Indicator

Actual life indicator reported by SMART Attribute byte index [5], Percentage Used, recommends User to replace drive when reaching to 100%.

Read Only Mode (End of Life)

When drive is aged by cumulated program/erase cycles, media worn-out may cause increasing numbers of later bad block. When the number of usable good blocks falls outside a defined usable range, the drive will notify Host through AER event and Critical Warning to enter Read Only Mode to prevent further data corruption. User should start to replace the drive with another one immediately.

1.4 An Adaptive Approach to Performance Tuning

1.4.1 Throughput

Based on the available space of the disk, the Delkin Device BGA SSD will regulate the read/write speed and manage the performance of throughput. When there still remains a lot of space, the firmware will continuously perform read/write action. There is still no need to implement garbage collection to allocate and release memory, which will accelerate the read/write processing to improve the performance. Contrarily, when the space is going to be used up, the BGA SSD will slow down the read/write processing, and implement garbage collection to release memory. Hence, read/write performance will become slower.

© 2023 | Delkin Devices Inc.

2 PRODUCT SPECIFICATION OVERVIEW

- Capacity
 - 256GB, 512GB & 1TB
- Operation Temp. Range
 - -40~105°C

Electrical/Physical Interface

- PCle Interface
- Compliant with NVMe 1.4
- PCIe Express Base ver. 4.0
- PCIe Gen 4 x 4 lane & backward compatible to PCIe Gen 3, PCIe Gen 2 and Gen
 1
- Support up to QD 128 with queue depth of up to 64K
- Support power management

Supported NAND Flash

- Support up to 16 Flash Chip Enables (CE) within a single design
- Support 8-bit I/O NAND Flash
- Support Toggle 2.0, Toggle 3.0 and Toggle 4.0 interface

ECC Scheme

BGA SSD applies the LDPC + RAID ECC algorithm.

Sector Size Support

- 512byte
- 4KB

UART/GPIO

Voltage Rails

BGA SSD

- P1=2.5V
- P2=1.2V
- P3=0.85V

Support SMART and TRIM commands

LBA Range

IDEMA Standard

	512 By	tes/Sector	Sequential			
Capacity	Number of	User Available	Number of	User Available		
	Total LBA	Bytes	Total LBA	Bytes		
256GB	500,118,192	256,060,514,304	62,514,774	256,060,514,304		
512GB	1,000,215,216	512,110,190,592	125,026,902	512,110,190,592		
1TB	2,000,409,264	1,024,209,543,168	250,051,158	1,024,209,543,168		

2.4 Performance

PS0 (Full Speed Mode)

	Seque	ential	Random			
Capacity	Read (MB/s)	Write (MB/s)	Read (MB/s)	Write (MB/s)		
256GB	2950	1000	110K	245K		
512GB	3650	1900	220K	450K		
1TB	3650	2900	380K	500K		

NOTES:

Performance is estimated with the following conditions

- Sequential: CrystalDiskMark 7.0, 1GB range, QD=8T1
- Random: IOMeter, 1GB range, 4K data size, QD=32T16

TBW (Terabytes Written)

Capacity	TBW
256GB	248
512GB	661
1TB	1341

NOTES:

- TBW is measured by JEDEC Client 219A workload and calculated with PE count = 3000.
- TBW may differ according to flash configuration and platform configuration.

- The SSD supports trim function. If Operation System does not support trim command, performance and TBW will be affected. (Like certain Windows OS, Linux kernel version before 2.6.33, other OS please reference each own user manual)
- The endurance of SSD could be estimated based on user behavior, NAND endurance cycles, and write amplification factor.

3 ENVIRONMENTAL SPECIFICATIONS 3.1 MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device.

The predicted result of Delkin's BGA SSD is more than 1,500,000 hours.

3.2 Certifications and Compliances

- RoHS
- WHQL
- PCI Express Base 4.0
- UNH-IOL NVM Express Logo

4 ELECTRICAL SPECIFICATIONS

4.1 Supply Voltage

Parameter		Rating							
	Specification	Min.	Nom.	Max.					
	Flash Core	+2.45V	+2.5V	+2.75V					
Operating Voltage	Flash IO supply	+1.16V	+1.2V	+1.26V					
	Controller Core	+0.80V	+0.85V	+0.88V					
Rise Time (Max/Min)		100ms	/0.1ms						
Fall Time (Max/Min)	5s/1ms 1s								
Min. Off Time ¹²									

NOTES:

1. Minimum time between power removed from SSD (VCC < 500 mW) and power re-applied to the drive.

2. The Min. Off Time may differ according to power solution used.

4.2 Power Consumption

Power Consumption of each power state in mW

		Read			Write			
Capacity	PS0	PS1	PS2	PS0	PS1	PS2	PS3	PS4
256GB	2,900	2,000	1,350	2,200	1,700	1,200	50	5
512GB	3,200	2,100	1,300	2,650	1,700	1,200	50	5
1TB	3,500	2,100	1,300	3,500	1,800	1,200	50	5

NOTES:

1. Power consumption is estimated with the condition under ambient temperature @25oC.

2. The average value of power consumption is achieved based on 100% conversion efficiency.

3. The temperature of a storage device in PS1 should remain constant or should slightly decrease for all workloads so the actual power in PS1 should be lower than PS0.

4. The temperature of a storage device in PS2 should decrease sharply for all workloads so the actual power in PS2 should be lower than PS1.

Capacity	PWR1 Max (mA)	PWR2 Max (mA)	PWR3 Max (mA)
256GB	1000	1000	1500
512GB	1000	1200	1600
1TB	1100	1300	1550

PS0 (Full Speed Mode) MAX Current in mA

NOTES:

- 1. Power consumption is estimated with the condition under ambient temperature @25°C.
- 2. The average value of power consumption is achieved based on 100% conversion efficiency.

3. The temperature of a storage device in PS1 should remain constant or should slightly decrease for all workloads so the actual power in PS1 should be lower than PS0.

4. The temperature of a storage device in PS2 should decrease sharply for all workloads so the actual power in PS2 should be lower than PS1.

5. Max current is estimated under SLC mode.

5 INTERFACE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
А	DNU	DNU		DNU		DNU		DNU			DNU		DNU		DNU		DNU	DNU	A
в	DNU	DNU		DNU		DNU		1V8_REG			DNU		DNU		DNU		DNU	DNU	в
с	GND	GND	GND	GND	GND	DNU	DNU	DNU	DNU	FLASH_RZQ	DNU	DNU	DNU	DNU	GND	DNU	DNU	DNU	с
D				REFCLKP	REFCLKN	GND	PERSTN	CLKREQB	PWR_1	PWR_1	GND	XEXTRSTB	DIAG1	DNU	DNU				D
Е	GND	GND	GND	GND	GND	GND	GND	DNU	PWR_1	PWR_1	GND	DNU	DIAG3	GND	GND	DNU	DNU	DNU	Е
F				PERP0	PERN0	GND								DNU	GND				F
G	GND	GND	GND	GND	GND		PWR_3	PWR_3	GND	GND	PWR_3	PWR_3		GND	GND	DNU	DNU	DNU	G
н				PETP0	PETNO		PWR_3	PWR_3	GND	GND	PWR_3	PWR_3		GND	PLN				н
J	GND	GND	GND	GND	GND		PWR_3	PWR_3	GND	GND	PWR_3	PWR_3		GND	GND	DNU	DNU	DNU	J
к				PERP1	PERN1		GND	GND	GND	GND	GND	GND		DNU	PLA				к
L	GND	GND	GND	GND	GND		DNU	DNU	DNU	DNU	DNU	DNU		GND	GND	DNU	DNU	DNU	L
м				PETP1	PETN1		DNU	DNU	GND	GND	DNU	DNU		DNU	DNU				м
N	GND	GND	GND	GND	GND		DNU	DNU	DNU	DNU	DNU	DNU		GND	GND	DNU	JTAG_TCK	JTAG_TMS	N
Р				PERP2	PERN2		GND	GND	GND	GND	GND	GND		DNU	DNU				Ρ
R	GND	GND	GND	GND	GND		PWR_2	PWR_2	GND	GND	PWR_2	PWR_2		GND	GND	DNU	XGPIO0	DNU	R
т				PETP2	PETN2		PWR_2	PWR_2	GND	GND	PWR_2	PWR_2		DNU	DNU				т
U	GND	GND	GND	GND	GND		PWR_2	PWR_2	GND	GND	PWR_2	PWR_2		GND	GND	DNU	SMB_CLK	SMB_DATA	U
v				PERP3	PERN3									DNU	DNU				v
w	GND	GND	GND	GND	GND	GND	LED/DAS	DNU	PWR_1	PWR_1	GND	DNU	DNU	GND	GND	DNU	DNU	DNU	w
Y				PETP3	PETN3	GND	DNU	DNU	PWR_1	PWR_1	GND	DNU	GND	DNU	DNU				Y
AA	GND	GND	GND	GND	GND	DNU	DNU	DNU	DNU	CTL_RZQ	DNU	DNU	DNU	GND	GND	DNU	DNU	DNU	AA
AB	DNU	DNU		DNU		DNU		DNU			DNU		DNU		DNU		DNU	DNU	AB
AC	DNU	DNU		DNU		DNU		DNU			DNU		DNU		DNU		DNU	DNU	AC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

5.1 Pin Assignment and Descriptions

BGA	Pin	Descri	ption
0.0		200011	P

	-	00/1		1
		Pin		10
Pin Name	BGA 291	Туре	Description	Voltage
	·		UART/GPIO	
XGPIO0	R17	I	Debug only	1.8V
DIAG1	D13	I	Debug only	1.8V
DIAG0	E13	0	Debug only	1.8V
SMB_CLK	U17	I/O	Debug only	1.8V
SMB_DATA	U18	I/O	Debug only	1.8V
JTAG_TCK	N17	I/O	Debug only	1.8V
JTAG_TMS	N18	I/O	Debug only	1.8V
XEXTRSTB	D12	-	Debug only	1.8V
1V8_REG	B8	-	Debug only	1.8V
			PCIe Interface Signals	
PERPO	F4			
PERNO	F5			
PERP1	К4			
PERN1	К5			
PERP2	P4			
PERN2	P5			
PERP3	V4			
PERN3	V5			
PETPO	H4			
PETNO	H5	I/O	PCIe TX/RX Differential signals defined by the PCI Express	
PETP1	M4	1/0		
PETN1	M5		Card Electromechanical Specification.	
PETP2	T4			
PETN2	T5			
PETP3	Y4			
PETN3	Y5			
REFCLKP	D4	I		
REFCLKN	D5	1	PCIe Reference Clock signals (100 MHz) defined by the PCI	
	55		Express Card Electromechanical Specification.	

PERSTN	D7	I	PCIe Reset is a functional reset to the card as defined by the PCI Express Mini Card Electromechanical Specification	1.8V
CLKREQB	D8	I/O	Clock Request is a reference clock request signal as defined by the PCI Express Mini Card Electromechanical Specification; Also used by L1 PM Substates.	1.8V

Optional Signals					
FLASH_RZQ	C10	Ι	Flash Calibration REF RESISTENCE	-	
CTL_RZQ	AA10	Ι	CTL Calibration REF RESISTENCE	-	
PLA	К15	0	Power Loss Acknowledge	1.8V	
PLN	H15	Ι	Power Loss Notification	1.8V	
	SSD Specific Signals				
LED/DAS	W7	0	Open drain, active low signal. This signal is used to allow the Adapter to provide status indication via LED device that will be provided by the system.	3.3V	
			Power Supply Signals		
	D9				
	D10	- - - -			
	E9				
	E10				
PWR_1	W9		+2.5 V source	2.5V	
_	W10				
	Y9				
	Y10				
	R7				
	R8				
	R11				
	R12				
	Т7				
	Т8				
	T11				

	T12]		
PWR_2	U7	I	+1.2 V source	1.2V
	U8			
	U11			
	U12			
	G7			
	G8			
	G11			
	G12			
	H7			
PWR_3	H8	I	+0.85 V source	0.85V
	H11			
	H12			
	J7			
	81			
	J11			
	J12			
Pin Name	BGA 291		Description	
	C1			
	C2			
	C3			
	C4			
	•.			
	C5			
	C5			
	C5 C15			
	C5 C15 D6			
	C5 C15 D6 D11			
	C5 C15 D6 D11 E1			
	C5 C15 D6 D11 E1 E2			
	C5 C15 D6 D11 E1 E2 E3			
	C5 C15 D6 D11 E1 E2 E3 E3 E4			

GND

GND

E11
E14
E15
F6
F15
G1
G2
G3
G4
G5
G9
G10
G10 G14
G15
H9
H10
H14
J1
J2
J3
J4
J5 J9
J9 J10
J14
J15
К7
К8
К9
К10
K11
K12
L1
L2 L3
LJ

L4
L5
L14
L15
M9
M10
N1
N2
N3
N4
N5
N14
N15
P7
P8
P9
P10
P11
P12
R1
R2
R3
R4
R5
R9
R10
R14
R15
Т9
T10
U1
U2
U3
U4
U5
U9
U10
U14

	A1	
	A2	
DNU	A4	Do not use. Manufacturing purpose only
	A6	
	A8	
	A11	
	A13	
	A15	
	A17	
	A18	
	B1	
	B2	
	B4	
	B6	
	B11	
	B13	
	B15	

B17
B18
C6
C7
C8
С9
C11
C12
C13
C14
C16
C17
C18
D14
D15
E8
E12
E16
E17
E18
F14
G16
G17
G18
J16
J17
J18
K14
L7
L8
L9
L10
L11
L12
L16
L17
L18
M7
M8

M11	
M12	
M14	
M15	
N7	
N8	
N9	
N10	
N11	
N12	
N16	
P14	
P15	
R16	
R18	
T14	
T15	
U16	
V14	
V15	
W8	
W12	
W13	
W16	
W17	
W18	
Y7	
Y8	
Y12	
Y14	
Y15	
AA6	
AA7	
AA8	
AA9	
AA11	
AA12	
AA13	
AA16	

AA17	
AA18	
AB1	
AB2	
AB4	
AB6	
AB8	
AB11	
AB13	
AB15	
AB17	
AB18	
AC1	
AC2	
AC4	
AC6	
AC8	
AC11	
AC13	
AC15	
AC17	
AC18	

Г

_

6 SUPPORTED COMMANDS

6.1. NVME COMMAND LIST

Admin Commands		
Opcode	Command Description	
00h	Delete I/O Submission Queue	
01h	Create I/O Submission Queue	
02h	Get Log Page	
04h	Delete I/O Completion Queue	
05h	Create I/O Completion Queue	
06h	Identify	
08h	Abort	
09h	Set Features	
0Ah	Get Features	
0Ch	Asynchronous Event Request	
0Dh	Namespace Management	
10h	Firmware Activate	
11h	Firmware Image Download	
14h	Device Self-test	
15h	Namespace Attachment	
18h	Keep Alive	

Opcode	Command Description
80h	Format NVM
81h	Security Send
82h	Security Receive
84h	Sanitize

Opcode	Command Description	
00h	Flush	
01h	Write	
02h	Read	
04h	Write Uncorrectable	
05h	Compare	

© 2023 | Delkin Devices Inc.

08h	Write Zeroes
09h	Dataset Management

6.2 IDENTIFY DEVICE DATA

Identify Controller Data Structure

Bytes	Description	Default Value
01:00	PCI Vendor ID (VID)	0x1987
03:02	PCI Subsystem Vendor ID (SSVID)	0x1987
23:04	Serial Number (SN)	SN
63:24	Model Number (MN)	Model Number
71:64	Firmware Revision (FR)	FW Name
72	Recommended Arbitration Burst (RAB)	0x4
75:73	IEEE OUI Identifier (IEEE)	Assigned by IEEE/RAC
76	Controller Multi-Path I/O and Namespace Sharing Capabilities (CMIC)	0x0
77	Maximum Data Transfer Size (MDTS)	0x6
79:78	Controller ID (CNTLID)	0x0000
83:80	Version (VER)	0x10400
87:84	RTD3 Resume Latency (RTD3R)	0x186A0
91:88	RTD3 Entry Latency (RTD3E)	0x4C4B40
95:92	Optional Asynchronous Events Supported (OAES)	0x0
99:96	Controller Attributes (CTRATT)	0x2
101:100	Read Recovery Levels Supported (RRLS)	0x0
110:102	Reserved	0x00
111	Controller Type (CNTRLTYPE)	0x01
127:112	FRU Globally Unique Identifier (FGUID)	0x00
129:128	Command Retry Delay Time 1 (CRDT1)	0x0
131:130	Command Retry Delay Time 2 (CRDT2)	0x0
133:132	Command Retry Delay Time 3 (CRDT3)	0x0
239:134	Reserved	0x00
255:240	Refer to the NVMe Management Interface Specification for Definition	0x00
257:256	Optional Admin Command Support (OACS)	0x17

258	Abort Command Limit (ACL)	0x3	
259	Asynchronous Event Request Limit (AERL)	0x3	
260	Firmware Updates (FRMW) 0x12		
261	Log Page Attributes (LPA)	0x1E	
262	Error Log Page Entries (ELPE)	0x3E	
263	Number of Power States Support (NPSS)	0x4	
264	Admin Vendor Specific Command Configuration (AVSCC)	0x1	
265	Autonomous Power State Transition Attributes (APSTA)	0x1	
267:266	Warning Composite Temperature Threshold (WCTEMP)	0x16B	
269:268	Critical Composite Temperature Threshold (CCTEMP)	0x170	
271:270	Maximum Time for Firmware Activation (MTFA)	0x64	
275:272	Host Memory Buffer Preferred Size (HMPRE)	0x00000000(HMB off)Depend on Disk Size(HMB on)	
279:276	Host Memory Buffer Minimum Size (HMMIN)	0x00000000(HMB off)Depend on Disk Size(HMB on)	
295:280	Total NVM Capacity (TNVMCAP) non-zero		
311:296	Unallocated NVM Capacity (UNVMCAP)	0x00	
315:312	Replay Protected Memory Block Support (RPMBS)	0x1F1F0002	
317:316	Extended Device Self-test Time (EDSTT)	0x1E	
318	Device Self-test Options (DSTO)	0x0	
319	Firmware Update Granularity (FWUG)	0x4	
321:320	Keep Alive Support (KAS)	0x0	
323:322	Host Controlled Thermal Management Attributes (HCTMA)	0x1	
325:324	Minimum Thermal Management Temperature (MNTMT)	0x111	
327:326	Maximum Thermal Management Temperature (MXTMT)	0x170	
331:328	Sanitize Capabilities (SANICAP)	0xA0000006	
335:332	Host Memory Buffer Minimum Descriptor Entry Size (HMMINDS)	0x0	
337:336	Host Memory Maximum Descriptors Entries (HMMAXD)	0x0	
339:338	NVM Set Identifier Maximum (NSETIDMAX)	0x0	
341:340	Endurance Group Identifier Maximum (ENDGIDMAX)	0x0	
342	ANA Transition Time (ANATT)	0x0	

343	Asymmetric Namespace Access Capabilities (ANACAP)	0x0	
347:344	ANA Group Identifier Maximum (ANAGRPMAX)	0x0	
351:348	Number of ANA Group Identifiers (NANAGRPID)		
355:352	Persistent Event Log Size (PELS)	0x60	
511:356	Reserved	0x00	
512	Submission Queue Entry Size (SQES)	0x66	
513	Completion Queue Entry Size (CQES)	0x44	
515:514	Maximum Outstanding Commands (MAXCMD)	0x100	
519:516	Number of Namespaces (NN)	0x1	
521:520	Optional NVM Command Support (ONCS)	0xDF	
523:522	Fused Operation Support (FUSES)	0x0	
524	Format NVM Attributes (FNA)	0x0	
525	Volatile Write Cache (VWC)	0x7	
527:526	Atomic Write Unit Normal (AWUN)	OxFF	
529:528	Atomic Write Unit Power Fail (AWUPF)	0x0	
530	NVM Vendor Specific Command Configuration (NVSCC)	0x1	
531	Reserved	0x0	
533:532	Atomic Compare & Write Unit (ACWU)	0x0	
535:534	Reserved	0x00	
539:536	SGL Support (SGLS)	0x0	
543:540	Maximum Number of Allowed Namespaces (MNAN)	0x0	
767:544	Reserved	0x00	
1023:76	NVM Subsystem NVMe Qualified Name (SUBNQN)	nqn.2020- 11.com.delkin:nvme:PS5	
8		021:	
1791:10 24	Reserved	0x00	
2047:17 92	Refer to the NVMe over Fabrics specification	0x00	
2079:2048	Power State 0 Descriptor (PSD0)		
Bit[255:184]	Reserved 0x00		
Bit[183:182]	Active Power Scale (APS)	0x0	
Bit[181:179]	Reserved	0x0	
Bit[178:176]	Active Power Workload (APW)	0x0	

Bit[175:160]	Active Power (ACTP)	0x0
Bit[159:152]	Reserved	0x0
Bit[151:150]	Idle Power Scale (IPS)	0x0
Bit[149:144]	Reserved	0x0
Bit[143:128]	Idle Power (IDLP)	0x0
Bit[127:125]	Reserved	0x0
Bit[124:120]	Relative Write Latency (RWL)	0x0
Bit[119:117]	Reserved	0x0
Bit[116:112]	Relative Write Throughput (RWT)	0x0
Bit[111:109]	Reserved	0x0
Bit[108:104]	Relative Read Latency (RRL)	0x0
Bit[103:101]	Reserved	0x0
Bit[100:96]	Relative Read Throughput (RRT)	0x0
Bit[95:64]	Exit Latency (EXLAT)	0x0
Bit[63:32]	Entry Latency (ENLAT)	0x0
Bit[31:26]	Reserved	0x0
Bytes	Description	Default Value
Bit[25]	Non-Operational State (NOPS)	0x0
Bit[24]	Max Power Scale (MPS)	0x0
Bit[23:16]	Reserved	0x0
Bit[15:0]	Maximum Power (MP)	0x1F4
2111:2080	Power State 1 Descriptor (PSD1)	
Bit[255:184]	Reserved	0x00
Bit[183:182]	Active Power Scale (APS)	0x0
Bit[181:179]	Reserved	0x0
Bit[178:176]	Active Power Workload (APW)	0x0
Bit[175:160]	Active Power (ACTP)	0x0
Bit[159:152]	Reserved	0x0
Bit[151:150]	Idle Power Scale (IPS)	0x0
Bit[149:144]	Reserved	0x0
Bit[143:128]	Idle Power (IDLP)	0x0
Bit[127:125]	Reserved	0x0

Bit[119:117]	Reserved	0x0
Bit[116:112]	Relative Write Throughput (RWT)	0x1
Bit[111:109]	Reserved	0x0
Bit[108:104]	Relative Read Latency (RRL)	0x1
Bit[103:101]	Reserved	0x0
Bit[100:96]	Relative Read Throughput (RRT)	0x1
Bit[95:64]	Exit Latency (EXLAT)	0x0
Bit[63:32]	Entry Latency (ENLAT)	0x0
Bit[31:26]	Reserved	0x0
Bit[25]	Non-Operational State (NOPS)	0x0
Bit[24]	Max Power Scale (MPS)	0x0
Bit[23:16]	Reserved	0x0
Bit[15:0]	Maximum Power (MP)	Ox1F4
2143:2112	Power State 2 Descriptor (PSD2)	
Bit[255:184]	Reserved	0x00
Bit[183:182]	Active Power Scale (APS)	0x0
Bit[181:179]	Reserved	0x0
Bit[178:176]	Active Power Workload (APW)	0x0
Bit[175:160]	Active Power (ACTP)	0x0
Bit[159:152]	Reserved	0x0
Bit[151:150]	Idle Power Scale (IPS)	0x0
Bit[149:144]	Reserved	0x0
Bytes	Description	Default Value
Bit[143:128]	Idle Power (IDLP)	0x0
Bit[127:125]	Reserved	0x0
Bit[124:120]	Relative Write Latency (RWL)	0x2
Bit[119:117]	Reserved	0x0
Bit[116:112]	Relative Write Throughput (RWT) 0x2	
Bit[111:109]	Reserved 0x0	
Bit[108:104]	Relative Read Latency (RRL)	0x2
Bit[103:101]	Reserved 0x0	
Bit[100:96]	Relative Read Throughput (RRT)	0x2
Bit[95:64]	Exit Latency (EXLAT) 0x0	

Bit[63:32]	Entry Latency (ENLAT)	0x0
Bit[31:26]	Reserved	0x0
Bit[25]	Non-Operational State (NOPS)	0x0
Bit[24]	Max Power Scale (MPS)	0x0
Bit[23:16]	Reserved	0x0
Bit[15:0]	Maximum Power (MP)	0x1F4
2175:2144	Power State 3 Descriptor (PSD3)	
Bit[255:184]	Reserved	0x00
Bit[183:182]	Active Power Scale (APS)	0x0
Bit[181:179]	Reserved	0x0
Bit[178:176]	Active Power Workload (APW)	0x0
Bit[175:160]	Active Power (ACTP)	0x0
Bit[159:152]	Reserved	0x0
Bit[151:150]	Idle Power Scale (IPS)	0x0
Bit[149:144]	Reserved	0x0
Bit[143:128]	Idle Power (IDLP)	0x0
Bit[127:125]	Reserved	0x0
Bit[124:120]	Relative Write Latency (RWL)	0x3
Bit[119:117]	Reserved 0x0	
Bit[116:112]	Relative Write Throughput (RWT)	0x3
Bit[111:109]	Reserved	0x0
Bit[108:104]	Relative Read Latency (RRL)	0x3
Bit[103:101]	Reserved	0x0
Bit[100:96]	Relative Read Throughput (RRT)	0x3
Bit[95:64]	Exit Latency (EXLAT)	0x7D0
Bit[63:32]	Entry Latency (ENLAT)	0xBB8
Bit[31:26]	Reserved	0x0
Bit[25]	Non-Operational State (NOPS)	0x1
Bytes	Description	Default Value
Bit[24]	Max Power Scale (MPS)	0x0
Bit[23:16]	Reserved	0x0
Bit[15:0]	Maximum Power (MP)	0x1F4
2207:2176	Power State 4 Descriptor (PSD4)	

Bit[255:184]	Reserved	0×00
Bit[183:182]	Active Power Scale (APS)	0x0
Bit[181:179]	Reserved	0x0
Bit[178:176]	Active Power Workload (APW)	0x0
Bit[175:160]	Active Power (ACTP)	0x0
Bit[159:152]	Reserved	0x0
Bit[151:150]	Idle Power Scale (IPS)	0x0
Bit[149:144]	Reserved	0x0
Bit[143:128]	Idle Power (IDLP)	0x0
Bit[127:125]	Reserved	0x0
Bit[124:120]	Relative Write Latency (RWL)	0x4
Bit[119:117]	Reserved	0x0
Bit[116:112]	Relative Write Throughput (RWT)	0x4
Bit[111:109]	Reserved	0x0
Bit[108:104]	Relative Read Latency (RRL)	0x4
Bit[103:101]	Reserved	0x0
Bit[100:96]	Relative Read Throughput (RRT)	0x4
Bit[95:64]	Exit Latency (EXLAT)	0x9C40
Bit[63:32]	Entry Latency (ENLAT)	0x2710
Bit[31:26]	Reserved	0x0
Bit[25]	Non-Operational State (NOPS)	0x1
Bit[24]	Max Power Scale (MPS)	0x0
Bit[23:16]	Reserved	0x0
Bit[15:0]	Maximum Power (MP)	0x1F4
	(N/A)	0
3071:3040	Power State 31 Descriptor (PSD31)	0
3107:3072	Vendor Specific (VS)	0x00
3109:3108	PLP Supported	0x8001
4095:3110	Vendor Specific (VS)	0x00

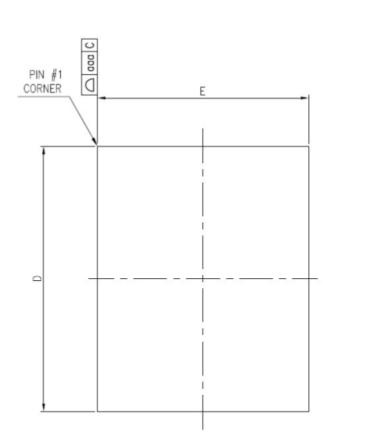
7 **SMART ATTRIBUTES**

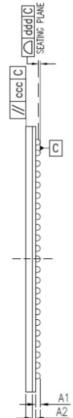
SMART Attributes (Log Identifier 02h)

SMART Attributes (Log Identifier 02h)			
Bytes Index	Bytes	Description	
[0]	1	Critical Warning	
[2:1]	2	Composite Temperature	
[3]	1	Available Spare	
[4]	1	Available Spare Threshold	
[5]	1	Percentage Used	
[31:6]	26	Reserved	
[47:32]	16	Data Units Read	
[63:48]	16	Data Units Written	
[79:64]	16	Host Read Commands	
[95:80]	16	Host Write Commands	
[111:96]	16	Controller Busy Time	
[127:112]	16	Power Cycles	
[143:128]	16	Power On Hours	
[159:144]	16	Unsafe Shutdowns	
[175:160]	16	Media and Data Integrity Errors	
[191:176]	16	Number of Error Information Log Entries	
[195:192]	4	Warning Composite Temperature Time	
[199:196]	4	Critical Composite Temperature Time	
[201:200]	2	Temperature Sensor 1	
[203:202]	2	Temperature Sensor 2	
[205:204]	2	Temperature Sensor 3	
[207:206]	2	Temperature Sensor 4	
[209:208]	2	Temperature Sensor 5	
[211:210]	2	Temperature Sensor 6	
[213:212]	2	Temperature Sensor 7	
[215:214]	2	Temperature Sensor 8	
[219:216]	4	Thermal Management Temperature 1 Transition Count	
[223:220]	4	Thermal Management Temperature 2 Transition Count	
[227:224]	4	Total Time For Thermal Management Temperature 1	

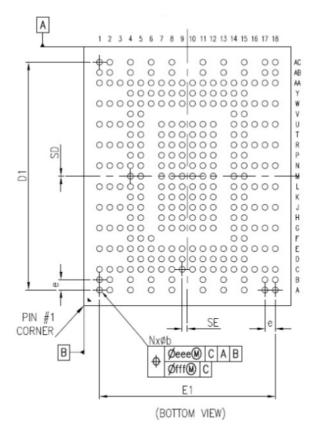
© 2023 | Delkin Devices Inc.

[231:2	228]	4	Total Time For Thermal Management Temperature 2
[511:2	232]	280	Reserved


8 PHYSICAL DIMENSIONS


Package: 16mm (x-axis) x 20mm (y-axis) / 0.8mm (Ball Pitch)

Capacity	Height (mm)	Width (mm)	length (mm)	Weight (gram)
256GB	1.15	16	20	0.67
512GB	1.35	16	20	0.84
1TB	1.65	16	20	1


Top View

Side View

Bottom View

	Symbol	Dimension in MM			
		Min	Nom	Мах	
Total Thickness	Α	1.45	1.57	1.65	
Stand Off	A1	0.30	0.35	0.40	
Substrate Thickness	A2	0.22			
Mold Thickness	A3	1.00			
Body Size	D	20			
	E	16			
Ball Diameter		0.45			
Ball Opening		0.40			
Ball Widt	В	0.40	0.45	0.50	
Ball Pitch	E	0.80			
Ball Count	Ν	291			
Edge Ball Center to Center	D1	17.60 BSC.			
	E1	13.60 BSC			
Body Center to Contact Ball	SD		0.00 BSC		
	SE	0.40 BSC			
JEDEC (REF)		MO-216 (REF)			
Package Edge Tolerance	aaa	0.15			
Mold Flatness	ccc		0.20		
Copalnarity	ddd		0.20		
Ball Ofset (Package)	eee	0.15			
Ball Offset (Ball)	fff		0.08		

NOTES:

- 1. All dimensions are in mm.
- 2. Ball designation is per JEP95, SECTION 3, SPP-010.
- 3. Fiducial Markings (Missing Fiducial location is A1 Corner Indicator).
- 4. A1 Triangle (orientation can vary and is non-critical).
- 5. DIM b is measured at the maximum solder ball diameter, parallel to primary datum Z.

WARNING: This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm. For more information go to www.p65warnings.ca.gov.